또 初期(초기)化(화)당 數式(수식)이당[編輯] ∑ m = 1 ∞ ∑ n = 1 ∞ m 2 n 3 m ( m 3 n + n 3 m ) superscript subscript 𝑚 1 superscript subscript 𝑛 1 superscript 𝑚 2 𝑛 superscript 3 𝑚 𝑚 superscript 3 𝑛 𝑛 superscript 3 𝑚 {\displaystyle{\displaystyle\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}{\frac{m^{2}% \,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}}} A m , n = ( a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a m , 1 a m , 2 ⋯ a m , n ) subscript 𝐴 𝑚 𝑛 subscript 𝑎 1 1 subscript 𝑎 1 2 ⋯ subscript 𝑎 1 𝑛 subscript 𝑎 2 1 subscript 𝑎 2 2 ⋯ subscript 𝑎 2 𝑛 ⋮ ⋮ ⋱ ⋮ subscript 𝑎 𝑚 1 subscript 𝑎 𝑚 2 ⋯ subscript 𝑎 𝑚 𝑛 {\displaystyle{\displaystyle A_{m,n}={\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots&a_% {1,n}\\ a_{2,1}&a_{2,2}&\cdots&a_{2,n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{m,1}&a_{m,2}&\cdots&a_{m,n}\end{pmatrix}}}} 이럼 대충 되나? i ℏ ∂ ∂ t | ψ ⟩ = H ^ | ψ ⟩ 𝑖 Planck-constant-over-2-pi 𝑡 ket 𝜓 ^ 𝐻 ket 𝜓 {\displaystyle{\displaystyle i\hbar{\frac{\partial}{\partial{t}}}|\psi\rangle=% {\hat{H}}|\psi\rangle}} ⟨ ϕ | ∂ 2 ∂ t 2 | ψ ⟩ quantum-operator-product italic-ϕ superscript 2 superscript 𝑡 2 𝜓 {\displaystyle{\displaystyle{\Bigg{\langle}}\phi{\Bigg{|}}{\frac{\partial^{2}}% {\partial{t}^{2}}}{\Bigg{|}}\psi{\Bigg{\rangle}}}}