오일러φ函數(함수)

Aidan (討論(토론) | 寄與(기여))님의 2023()10()16()())14()46() () (새 문서: '''오일러φ函數'''는 ()整數(정수)n에對해 1以上n以下의陽整數의數爻를값으로하는函數이다。이는數論(수론)()函數(함수)이며、乘法(승법)()函數(함수)이다。卽、定義域이陽整數이며、서로素인모든自然數의雙(m,n)에對하여 φ(mn)=φ(m)φ(n)이다。 最初로 이函數를考案한것은 레온하르트 오일러이나、그는 이를π로表記하였다。φ로써의表記를처음考案한것은 칼 프리드리히 가우스...)
(差異) ← 以前 版 | 最新版 (差異) | 다음 版 → (差異)

오일러φ函數(함수)()整數(정수)n()해 1以上(이상)n以下(이하)()整數(정수)數爻(수효)를값으로하는函數(함수)이다。이는數論(수론)()函數(함수)이며、乘法(승법)()函數(함수)이다。()定義域(정의역)()整數(정수)이며、서로()인모든自然數(자연수)()(m,n)에()하여 φ(mn)=φ(m)φ(n)이다。

最初(최초)로 이函數(함수)考案(고안)한것은 레온하르트 오일러이나、그는 이를π로表記(표기)하였다。φ로써의表記(표기)를처음考案(고안)한것은 칼 프리드리히 가우스이며 1801()著書(저서)Disquisitiones Arithmeticae算術(산술)硏究(연구))에登場(등장)한다。

素數(소수)p()하여k를任意(임의)自然數(자연수)라하면、pk以下(이하)의p의倍數(배수)正確(정확)히pk-1()있으니、φ(pk)=pk-pk-1=pk(1-1/p)가成立(성립)한다。또한φ函數(함수)乘法(승법)()性質(성질)로써任意(임의)自然數(자연수)()하여그값이計算(계산)可能(가능)하다。